15 Referenztabellen
15.1 Verteilungsfunktion und Quantile der Standardnormalverteilung
Bei der z-Transformation benötigt man die Werte dieser Tabelle beispielsweise für Fragen wie
Wie hoch ist der prozentuale Anteil für Werte, die höchstens
X
sind?
\(\phi\) z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
2.0 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
2.1 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
2.2 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
2.4 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
2.5 | .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
2.6 | .9953 | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
2.7 | .9965 | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
2.8 | .9974 | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
2.9 | .9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986 |
3.0 | .9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
p = | 0.5000 | 0.7500 | 0.8000 | 0.9000 | 0.9500 | 0.9750 | 0.9900 | 0.9950 | 0.9975 | 0.9990 |
\(z_p\) = | 0.0000 | 0.6745 | 0.8416 | 1.2816 | 1.6449 | 1.9600 | 2.3263 | 2.5758 | 2.8070 | 3.0902 |
15.2 Überschreitungswahrscheinlichkeiten \(P\) für Abszissenwerte \(z\) der Standardnormalverteilung
Im Gegensatz zu Tabelle 15.1 zeigt Tabelle 15.2 die Überschreitungswahrscheinlichkeiten \(P\) für Abszissenwerte \(z\) der Standardnormalverteilung (\(\mu=0\) und \(\sigma=1\)).
Bei der z-Transformation benötigt man die Werte dieser Tabelle beispielsweise für Fragen wie
Wie hoch ist der prozentuale Anteil für Werte, die mindestens
X
sind?
\(\phi\) z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761 | .4721 | .4681 | .4641 |
0.1 | .4602 | .4562 | .4522 | .4483 | .4443 | .4404 | .4364 | .4325 | .4286 | .4247 |
0.2 | .4207 | .4168 | .4129 | .4090 | .4052 | .4013 | .3974 | .3936 | .3897 | .3859 |
0.3 | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594 | .3557 | .3520 | .3483 |
0.4 | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228 | .3192 | .3156 | .3121 |
0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2887 | .2843 | .2810 | .2776 |
0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 |
0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1464 | .1423 | .1401 | .1379 |
1.1 | .1357 | .1335 | .1314 | .1291 | .1271 | .1251 | .1230 | .1210 | .1190 | .1170 |
1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038 | .1020 | .1003 | .0985 |
1.3 | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869 | .0853 | .0838 | .0823 |
1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 | .0708 | .0694 | .0681 |
1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 | .0582 | .0571 | .0559 |
1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 | .0475 | .0465 | .0455 |
1.7 | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392 | .0384 | .0375 | .0367 |
1.8 | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314 | .0307 | .0301 | .0294 |
1.9 | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .0250 | .0244 | .0239 | .0233 |
2.0 | .0228 | .0222 | .0217 | .0212 | .0207 | .0202 | .0197 | .0192 | .0188 | .0183 |
2.1 | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154 | .0150 | .0146 | .0143 |
2.2 | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119 | .0116 | .0113 | .0110 |
2.3 | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091 | .0089 | .0087 | .0084 |
2.4 | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069 | .0068 | .0066 | .0064 |
2.5 | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052 | .0051 | .0049 | .0048 |
2.6 | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039 | .0038 | .0037 | .0036 |
2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029 | .0028 | .0027 | .0026 |
2.8 | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021 | .0021 | .0020 | .0019 |
2.9 | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015 | .0015 | .0014 | .0014 |
3.0 | .0013 | .0013 | .0013 | .0012 | .0012 | .0011 | .0011 | .0011 | .0010 | .0010 |
p = | 0.5000 | 0.7500 | 0.8000 | 0.9000 | 0.9500 | 0.9750 | 0.9900 | 0.9950 | 0.9975 | 0.9990 |
\(z_p\) = | 0.0000 | 0.6745 | 0.8416 | 1.2816 | 1.6449 | 1.9600 | 2.3263 | 2.5758 | 2.8070 | 3.0902 |
15.3 Kritische Werte \(t^*\) der \(t\)-Verteilung
\(\alpha\)/2 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.0005 |
---|---|---|---|---|---|---|
\(\alpha\) | 0.20 | 0.10 | 0.050 | 0.020 | 0.010 | 0.0010 |
1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 318.309 |
2 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 |
3 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 |
4 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 |
5 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 |
6 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 |
7 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 |
8 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 |
9 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 |
10 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 |
11 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 |
12 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 |
13 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 |
14 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 |
15 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 |
16 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 |
17 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 |
18 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.611 |
19 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 |
20 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 |
21 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 |
22 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 |
23 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 |
24 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 |
25 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 |
26 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 |
27 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 |
28 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 |
29 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 |
30 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 |
40 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 |
50 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 |
60 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 |
70 | 1.294 | 1.667 | 1.994 | 2.381 | 2.648 | 3.211 |
80 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 |
90 | 1.291 | 1.662 | 1.987 | 2.368 | 2.632 | 3.183 |
100 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 |
200 | 1.286 | 1.653 | 1.972 | 2.345 | 2.601 | 3.131 |
300 | 1.284 | 1.650 | 1.968 | 2.339 | 2.592 | 3.118 |
400 | 1.284 | 1.649 | 1.966 | 2.336 | 2.588 | 3.111 |
500 | 1.283 | 1.648 | 1.965 | 2.334 | 2.586 | 3.107 |
\(\infty\) | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 |